
Freezing around a finite heat sink immersed 
in an infinite phase change medium 
P. V. Padmanabhan and M. V. Krishnamurthy* 

Freezing around a spherical heat sink immersed in an infinite phase change 
medium - a free boundary problem involving growth and decay of the free 
boundary - i s  analysed here. A one-dimensional conduction model is formulated 
and the resulting partial differential equations are solved by finite difference 
methods. The energy discharged from the phase change medium during the heat 
transfer process is analysed for latent heat thermal energy storage applications. 
Results are presented for a wide range of parameters that are encountered in energy 
storage devices. The cases of slab/cylindrical heat sink are reexamined for a range 
of parameters not covered by the earlier investigators 
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When a finite, rigid cold body is suddenly immersed in an 
infinite pool of a liquid phase change medium (pcm), 
freezing will be initiated if the temperature of the cold 
body is less than the freezing point of pcm. When the pcm 
is initially at its freezing point, freezing continues asym- 
ptotically approaching steady-state conditions where the 
sink surface temperature equals the freezing temperature 
of the pcm. 

If the pcm is initially superheated, there follows a 
heat transfer process which can be divided into three 
stages. In the first stage, the temperature of the heat sink 
increases and freezing continues until a maximum value 
of crust thickness is reached. In the second stage the frozen 
pcm starts melting although the sink temperature con- 
tinues to rise. The second stage comes to an end with the 
crust totally disappearing when the sink surface tempera- 
ture equals the freezing temperature of the pcm. In the 
third stage, which will not be considered in this analysis, 
single phase heat transfer occurs, raising the temperature 
of the sink surface to the initial temperature of the pcm. 
This growth and decay phenomenon is encountered in 
such processes as dip soldering, dip forming, partial 
casting and latent heat thermal energy storage (lhtes) 
devices. 

There are two earlier papers ~'2 in this field. 
Tadjbakhsh and Liniger ~ analysed the case of a slab 
shaped heat sink in two situations: freezing of water 
around an ice slab (perturbation); and freezing of solder 
around a copper rod (perturbation, numerical and 
experimental). 

Their perturbation solutions contain complicated 
analytical expressions, which are tedious to calculate. 
Their graphical presentations of results are confined 
generally to the finite difference solution. 

J i j i  2 presented perturbation results for a cylin- 
drical heat sink and some experimental results on the 
freezing of water around a cold cylinder. That study is 
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restricted to the evaluation and comparison of the crust 
thickness for a specific experimental run. 

The purpose of this paper is to analyse the interface 
growth, sink temperature and energy transfer for a 
spherical heat sink. This has applications in direct contact 
heat exchangers (dche) used in lhtes devices in which a 
heat transfer fluid (lower in density and immiscible with 
the pcm) is introduced at the bottom of the storage vessel 
(containing pcm) as a dispersed phase. Bubbles of this 
fluid rising through the vessel transfer heat to or from the 
pcm. Typical examples of the heat transfer fluid and the 
pcm are Varasol (oil) and Glauber's salt respectively. The 
previous investigations reported on this problem con- 
cerned themselves with the selection and testing of a 
suitable heat transfer oil for various salt hydrates 3 5, 
hydrodynamic design procedures 6'7 and conceptual de- 
sign to overcome the problem of oil nozzle blockage s etc, 
but the phase change heat transfer aspects in dche have 
not been investigated at all. 

In this analysis, the heat transfer fluid drop is 
idealised to be spherical and assumed to be stationary to 
provide a rough estimate of the quantity of energy transfer 
and the maximum drop residence time. However, to have 
a generalised governing equation for all geometries, a 
shape factor S is introduced 9, where: 

S = 0 for a slab insulated on one side 
S = 0.5 for a flat cylinder transferring heat on one 
side, with small ratio of depth to diameter 
S = 1 for an infinitely long cylinder 
S = 1.5 for a football-shaped (ellipsoid) object 
S = 2 for a sphere 

To model the growth and decay phenomenon, the 
following simplifying assumptions are used: 
(a) thermophysical properties of the heat sink are inde- 

pendent of temperature; 
(b) the freezing temperature Tf* is single valued; 
(c) thermophysical properties of the pcm, although dif- 

ferent for the two phases, are constant within a phase; 
(d) heat transfer in the pcm is by one dimensional 

conduction only. Shifting of the freeze front due to 
density difference in the two phases is neglected; 
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(e) the heat sink is assumed to be thermally lumped. This 
assumption will allow extension of this analysis to the 
case of a translating heat sink. 

Formulation of the problem 

Physical model 

The physical model and the coordinate system are shown 
in Fig 1. A rigid heat sink of simple geometry, initially at a 
uniform temperature T% is suddenly immersed in an 
infinite quantity of liquid pcm initially at a uniform 
temperature T* which is greater than its freezing tempera- 
ture Tf*. For T*> T/~> T~.i, freezing will occur first, 
followed by melting. 

Mathematical  model 

Application of the conservation laws together with the 
assumptions mentioned earlier, yields the following set of 
equations: 

Solid phase: 
(t~2T*/Or*2)+ (S/r*)(OT*/&*) =(OT*/Ot)/a~ (la) 
in ff' >~ r* ~ r* 

Liquid phase: 

(02Tl*/t~r .2 ) + (S/r*)((?T*/Or*)= (t?T*/t~t)/a~ (lb) 

in r* >~ ff' 

At the interface between the frozen pcm and the heat sink: 

T* = T* at r* = r* (lc) 

2~(ST*/Sr*) = (pcr*)d(dT*/dt)/(S + 1) (ld) 

at r*=r*  

At the freezing front: 

T,* = T *  = ~ at  r* = rr* (1 e) 

2~( t? T* / Or* ) -- 2,( O T* / Or* ) = p~Ah ( dff ' /  dt ) (lf) 

at r* = r~ 
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Fig 1 Physical model and coordinate system 

Notation 

a Thermal  diffusivity 
c Specific heat  
E*~x Maximum possible energy transfer, Eq (21) 
EI,EE,E3, Normalised components of energy 

E4,E 5 transfer, Eqs (22)-(26) 
Fo Fourier number, a~t/r~ 2 
Fo + Time at which the decay of the free 

boundary starts 
Fo ++ Crust life time 
AFo Time step size 
Ah Latent heat of fusion of the phase change 

medium (pcm) 
n Number of equal divisions in the frozen 

pcm 
p Root of Neumann's transcendental 

equation, Eq (17) 
r* Space coordinate 
r Normalised space coordinate, (r*-r*)/r,* 
rf + Freeze front thickness at Fo + 
S Sink shape factor (0--slab; 1--cylinder; 

2 sphere) 
Ste Stefan number, cs(Ti*- T~,,in)/Ah 

t Time 
T* Temperature 
T Normalised temperature, 

(T* - T~,i.)/(T* -- T~.i.) 
V* Volume of heat sink 
w Heat capacity ratio, (pc)d/(pc)~ 
q Transformed space coordinate, r/rf 

point at which ~ =0.001 //max 
At/ Space step size 
2 Thermal conductivity 
p Density 

rg 
Subscripts 

d 
d,in 
f 
i 
in 
7 
1 
S 

Heat sink 
Initial condition of heat sink 
Condition at the moving boundary 
Space step index 
Initial condition of pcm 
Time step index 
Liquid pcm 
Solid pcm 
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As r*---*~, T*---*T* (lg) 
Initial conditions are: 

T~'=T~in at t=O (lh) 

T~*=T~* at t = 0  (li) 

r*=r* at t = 0  (lj) 
The following dimensionless variables are introduced to 
normalise the equations: 

T = (T* - T~.~.)/(Ti*- T~.)  (2) 

r = (r* - r*)lr* (3) 

Fo = a,t/r* 2 (4) 

w = (pC)d/(pc)~ (5) 

Ste = q(T*  - T~.m)tAh (6) 
The numerical, finite difference solution of these equa- 
tions needs complex programming in view of the time- 
varying space domain. Of the methods available to 
overcome this difficulty, the enthalpy method 1° is simple 
to program and gives fairly accurate results for the 
temperature profile. But, as observed by BelP l, time- 
temperature histories obtained with this method contain 
a number of false plateaus and are far from acceptable. 
Therefore, the enthalpy method needs further 
modifications ~ ~. 

The boundary fixing technique using Landau ~2 
type transformation is used here. The moving boundary is 
immobilised by the use of the following transformations: 

q = r/rr (7) 

4,=~? (8) 

Boundary immobilisation has the advantage of giving a 
time-invariant space domain, but the energy equations 
become more involved. The transformed equations are: 

(72 T , ~ T ~ (  S(b 1/2 . t/dq~ )_¢c3T, (9a) 

in l ~ q ~ 0  

+#T,I s¢ 
c3t/2 ~/-q[(1 +q~b ,/2) a, 2dFoJ a,  t3Fo 

in q~>l 

Z = Td at t/=O 

(9b) 

(9c) 

(#~/Oq)=-w~bl/2(dTd/dFo)/(S+l) at q = 0  (9d) 

T~ = Z = Tf at ~/= 1 (9e) 

(~ Tff~q)- (2,/2d(~ T@~/)=(d~b/dFo)/(2Ste) 
at t /= 1 (9f) 

To--* 1 as t/--~ ~ (9g) 

Td = 0 at Fo = 0 (9h) 

T~ = 1 at Fo = 0 (9i) 

¢ = 0 at Fo = 0 (9j) 

Numerical scheme 
A finite difference method is adopted for solving Eq (9). 
The frozen region (1 ~>q >/0) is subdivided into n equal 

divisions with a space increment of At/. Subscripts i = 1 
and i = n + l  denote the boundary q = 0  and q = l  re- 
spectively. Time is indexed by subscript j, with Fo = 0 at 
7--0. 

Using suitable analogues, the following difference 
equations can be obtained: 

dPi + ~ = ~i + [SteAFo/(3A~l)][(11Tf- 18 T,,i + 9T~_ l,i - 2T. -2,i) 

-- (,~./.~.)(-- 1 1 Tf+ lSTn+2j - 9T. +3,i + 2Tn +4.j)] 
(10) 

T¢~ l = T0j[1 - l l(S + 1)AFo/(6wArl¢i'/2)] + [(S + 1)AFo/ 

(6wA r/4,i I/2)] ( 18 Tzi - 9 T3,i + 2 T4.) (11) 

Ti-l,i, I ( P P - Q Q i ) -  T~,i, I(2PP + R R  ) + Ti+ ,,i+ , (PP + QQi) 

= -RR T~  4 (12) 

where: 

PP = l/(At/) 2 (13) 

~ dpi~ ffAFo in 2<.i<<.n 
Rg=((af faOCj+ffAFo in i>~(n+ 2) (14) 

l" ~,~ i/2 
o" / / j  + l ~ i ( ~ j  + l -  (~j7 / 

,/2 ~ 2X-F~ l/(2A") in 2<<.i<<.n (1 At- qi(Dj  + 1 ) 

QQ,=r¢,hm J ;  ]/(2Atl) ini>~(n+2) / ~vj+l a~i(¢j+l -¢j .  
L(1 +~j~jl/2) -t aj-~-Fo 

(15) 
Eqs (10) and (11) explicitly give the thickness of freeze 
front and the sink temperature respectively. Eq (12) is 
implicit and leads to a tridiagonal matrix which is solved 
by Thomas' algorithm t 3 to get the temperature profiles in 
the pcm. 

Computational procedure 
Since the frozen region ofpcm is non-existent at zero time, 
some of the terms in Eqs (10)-(12) are either indeterminate 
or infinite l*. Therefore a starting solution, which gives all 
the values at time step j--1,  is a pre-requisite to this 
scheme. By the same argument, the solution must be 
stopped just before the freeze front thickness becomes 
zero. 

To start the solution, it is assumed that Neumann's 
exact, closed form analytical solution for a semi-infinite 
planar pcm with an isothermal wall, is valid for the 
present problem also at time step j = 1. Then: 

rf = ~b 1 ;/2 = 2pFo 1/2 (16) 

where p is the root of the transcendental equation: 
,~l a~ 1/2 

T f - ~ , ( ~ )  ( 1 -  T? e~(~p(~/a~)57~ 

pTC 1/2 erf (p) exp (p2)  

Ste (17) 

Neglecting the heat capacity of the frozen pcm, the sink 
temperature may be approximated as: 

T~ =(S + 1 ) ¢ ' / 2 / ( w S t e )  (18) 

The temperature profiles in the pcm can then be written 
a s :  

erf(pqi) 
T~ = To +(Tf-- T~) er- ~ in 2<~i<<.n 
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• ~ erfc (Pt/i(as/a01/2 ) 
T~= 1 - ( i -  l d - ~  in i>~(n+2) (19) 

Now that the values are known at time stepj = 1, Eqs (I0)- 
(12) can be solved repeatedly in the same order, to get the 
values for time steps j ~> 2. 

The solution is stopped when the sink temperature 
reaches 0.9999 T r and the curve rr versus Fo is linearly 
extrapolated as suggested by Murray and Landis ~4. The 
extrapolation gives the crust life time Fo + +. Solution of 
these equations is obtained on an IBM 370/155 digital 
computer. 

Since the rate of growth of the freeze front is faster 
than its decay (as will be seen later), from the stand point 
of accuracy and cpu time, an initial time step of 
AFo= 1 x 10 -°  is used while starting the solution. The 
time step size is doubled at the end of every 10 time steps. 
A space step size of At/=0.1 (n= 10) was uniformly used, 
throughout the calculations. 

The liquid pcm region extends from q = 1 to r/= ~ .  
The latter value cannot be accommodated in the com- 
puter so the solution domain is restricted to ~/= r/ . . . .  when 
r/max is taken as the smallest value of r/ at which the 
gradient (dT/t3q)<<. 0.001. At each time step, the value of 
r/m,x will be changing and is fixed iteratively in the 
program by checking the gradients. 

During the later stages, particularly during the 
decay of the freeze front, the value of qmax is excessively 
large and the cpu time for each time step becomes 
prohibitively costly. This is an added reason for stopping 
the solution at T~ ~> 0.9999 Tf. 

Steady state condit ions and energy 
components  
Steady state will be reached when the sink surface 
temperature equals the initial temperature T* of the pcm. 
If the liquid pcm is initially not at its freezing point, then 
the steady state will be reached at the end of the third stage 
of the heat transfer process. The freeze front would have 
disappeared at the beginning of the third stage itself. 
Hence the steady state crust thickness is zero whenever 
the liquid pcm is initially superheated. 

If the liquid pcm is initially saturated, only the 
frozen region need be analysed and an energy balance can 
be written for the steady-state conditions, when the heat 
sink and pcm are at Tf*. At steady state conditions, the 
following relation can be derived: 

rf = [( 1 + wSte) 1/{., + 1) _ 1 ] (20) 

Obviously the freeze front thickness at any other time and 
any other initial conditions, will be lower than that given 
by Eq (20). 

Since thermal energy storage is the motivation for 
this investigation, it will be interesting to identify and 
study the various energy components associated with this 
phase change problem. There are two such components 
for freezing initiated without liquid superheat and four 
components when there is liquid superheat. Here again, 
the components are normalised by E*~,x, the maximum 
possible energy that could be extracted by the heat sink, 
ie: 

E*.x = (V*pth(T* - T~].in) (21) 

The total energy extracted by the heat sink and the four 

F r e e z i n g  a r o u n d  a f i n i t e  h e a t  s i n k  

components of energy released by the pcm are given 
below after normalisation: 

E x = '£, (22) 

(1 +rr) ~+1 - 1 (23) 
E2 - -  wSte 

[ (1  + r3 s + '  - 1 ] (1  - Tr)(cUa,)(&12J 
E a - (24)  

W 

! 

E4= (S+ 1)r t [ (1 + r/rf)S(Tf - T,) dr/ (25) 
w j 

o 

E 5 = E 1 - (E 2 + E 3 + E4) (26) 

E2 is the latent heat released by the freezing process. The 
component E 3 is the sensible energy released by the liquid 
pcm in the region r* ~< r* ~< rf* while it is cooled from T* to 
T~'. This component becomes zero for initially saturated 
liquid pcm. E 4 is the energy that is released as sensible 
heat by the subcooling of the frozen solid below the phase 
change temperature. Evaluation of E 4 is by numerical 
integration of the temperature profile using Simpson's 
l/3rd rule. The last energy component E 5 is the sensible 
energy released from the unfrozen liquid pcm in the region 
r*~> r*. E 5 is zero for saturated liquid pcm. 

Comparison w i th  earlier work  
Numerical results of Tadjbakhsh and Liniger I for the 
crust thickness in dip soldering are compared with the 
results from the present model in Fig 2. For the sake of 
completeness, the series solution given by them is applied 
and evaluated for this problem. The parameters used in 
this comparison are Ste=0.1522456, w=2.206885, 
Tr = 0.32815, )~121 = 2.037735 and alla~ = 0.491166. 

Their results predict a larger crust thickness than 
that predicted by the present model. Though experiments 
have been performed by them, the crust thickness values 
were not presented. Further, details of their numerical 
scheme, such as step sizes, iteration scheme, etc. are not 
given in their paper. Thus it is difficult to comment on the 
accuracy of the results. 

In spite of the fact that our model treats the heat 
sink as a lumped system and not as a distributed system, 
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Table 1 Thermophysical properties of steel 
and water  

Material 

Property Steel Water Ice 

Density, kg/m 3 7835 

Specific heat, 0.465 
kJ/(kg K) 

Thermal conductivity, 
W/(m K) 

Thermal diffusivity, 0.053 
m2/h 

Latent heat, kJ/kg 

Fusion temperature, 
K 

1002 920 

4.216 2.261 

0.5524 2.25 

471×10 -6 3890×10 -6 

334.95 

273 

their perturbation results are closer to the present numeri- 
cal results than their numerical results. 

The results of Jiji 2 for the freezing of water around 
a steel cylinder are compared with our model in Fig 3. The 
parameters are Ste =0.1759118, w= 1.7510264, 
Tf= 0.9808135, )~/2~ =4.0731354, a~/a~ = 0.1210796. 
Thermophysical properties of steel and water used in 
the analysis are listed in Table l. 

Discrepancies between the results of the two 
investigations could not be analysed as Jiji z has not 
specified the values of the thermophysical properties he 
used. 

Results and discussion 

Results were obtained for 
geometries: 

slab insulated at one end 
cylinder 
sphere 

the following heat sink 

The range of values used in the parametric 
was: 

Ste =0.1 1.3 
w =0.6-1.4 
Tf =0.7-1.0 
2,/21 = 0.5-1.5 
al/a, = 0.5-1.5 

The values are typical 
devices (Table 2). 

analysis 

of direct contact lhtes 

Time histories of crust thickness and sink 
temperature 

The effects of Stefan number on the time history of crust 
thickness and sink temperature are shown in Fig 4. The 
freeze front progress is retarded at smaller Stefan num- 
bers. With increasing Stefan numbers the maximum crust 
thickness rr + increases. The duration Fo + + of two-phase 
heat transfer appears to be insensitive to Stefan number 
at higher values of Ste. The sink temperature is higher for 
lower Stefan numbers at all times. 

The effect of the heat capacity ratio w on the crust 
thickness and sink temperature is shown in Fig 5. This is 
an important parameter that significantly affects the crust 
thickness. Both the maximum crust thickness rf + and the 
process time Fo ++ are considerably higher for larger 
values of w. The sink temperature, however, exhibits the 
opposite effect. The larger the value ofw the smaller is the 
sink temperature at small times and it has negligible effect 
on the sink temperature at large times. The superheat 
parameter Tr is a more significant parameter (Fig 6). For  a 

Table 2 Properties of pcmand immiscible 
oils + 

Property 

pcm 

N a N O 3 - K N 0 3  ~ + G l a u b e r ' s  Sa l t  

e u t e c t i c  (Na2S04 .1  O H 2 0 )  

Fusion tempera- 495 305 
ture, K 

Heat of fusion, 137.3 x 103 251 × 103 
J/kg 

Thermal Solid 0.484516 0.514 
conduc- Liquid 0.571131 0.589 
tivity, 
W/(K m) 

Specific heat, Solid 1507.25 1920 
J/(K kg) Liquid 1507.25 3260 

Density, Solid 2180 1460 
kg/m 3 Liquid 1880 1330 

Immiscible oil 

Hytherm-500 Varasol 
for high for low 
temperature temperature 

Density, kg/m 3 708 800 

Specific heat, 2964 2093 
J/(K kg) 

+ Properties taken from Refs 6, 1 5 - 1 8  
+ +46% N A N 0 3 - 5 4 %  KNO3 by weight ;  referred to as eutect ic f o r  

convenience. 
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pcm initially at its saturation temperature, Tf is unity. 
Smaller values of Tf indicate greater superheat of pcm. 
Both the crust thickness and the sink temperatures are 
considerably higher for larger Tf values. The values of rf +, 
F o  ÷ and F o  + ÷  are significantly greater for smaller 
superheat of pcm. It is to be noted that for Tf= 1, there is 
no decay and the crust thickness increases asymptotically 
towards a steady-state value. The steady-state crust 
thickness obtained numerically agrees closely with that 
given by Eq (20) for all the three geometries investigated. 

The change in the thermal conductivity due to 
phase change, expressed by 2J2~ affects the heat transfer 
process as shown in Fig 7. Increase in the pcm solid to 
liquid conductivity ratio accelerates the freeze front 
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movement and decelerates the decay of the freeze front. 
Correspondingly the sink temperature changes more 
slowly for larger values of 2j&. 

The pcm liquid to solid diffusivity ratio also 
influences the two-phase heat transfer as shown in Fig 8. 
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Here also it is seen that higher values of aja~ produce 
larger crust thickness and lower sink temperatures. 

Energy storage 

Various energy components defined in Eqs (22)-(26) are 
estimated for the various parameters. Since the oil drop in 
the immiscible oil-direct contact lhtes is idealised to be a 
sphere, the analysis was restricted to the spherical heat 
sink. 

Figs 9-11 show the time variation atE 1, E 2 ,  E 2 + E4 
and E 2 + E 4 + E  3. Wherever the curve E 2 + E  4 is not 
shown, it is to be taken that E 4 is so small that it could not 
be plotted separately. 

It is seen that for a given set of parameters, all the 
components except E 5 follow a pattern similar to that of 
the freeze front. That is, during the growth of the freeze 
front they increase, and during the decay of the phase 
change boundary they decrease. 

The sensible heat of the unfrozen region, E 5 
increases both during the growth and decay of the fusion 
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front. The increase is faster during the decay period. The 
reason is that as the freeze front grows, only the heat 
transfer fluid drop acts as the sink, while during its decay, 
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both the phase change boundary and the drop absorb 
heat. 

Since latent heat energy storage is of primary 
concern, the process should be stopped at time Fo +, 
before the decay starts. Beyond this time, the sensible 
energy content is more and at Fo + +, it is totally a sensible 
heat storage device. Of the four components, the latent 
heat E 2 and the sensible heat E 5 are far greater than g 3 
and E 4. In fact E 4 is so small that it cannot be separately 
plotted in Fig 8-10. 

The influence of Stefan number on the energy 
components is seen in Fig 9. It may be observed that for 
smaller Stefan numbers:  

• the latent heat energy released (E2) is greater; 
• the total energy extracted is higher; 
• the latent heat component  peak occurs at a smaller 

time, indicating a higher time rate of energy discharge. 

Thus it is preferable to have low Stefan numbers which 
implies that either the pcm has a large latent heat, or that 
the initial temperatures of the two media are close to each 
other and not far from the freezing temperature, or both. 
But there are additional factors such as thermal cycling 
behaviour, suitability of freezing temperature to the 
particular application, corrosiveness, etc. to be con- 
sidered. However, a Stefan number of 0.5 appears to be 
reasonable. For the combination of Hytherm 500 and 
nitrate eutectic, this gives a maximum temperature differ- 
ential of 45.6 K with the freezing temperature being 495 K. 

The liquid superheat Ty controls the energy com- 
ponents as shown in Fig 10. For larger values of Tf, the 
total energy extracted El, latent heat energy component  
E 2 and the peak values of E 1 and E 2 are higher. Such a 
behaviour is only to be expected, since lower Tf values 
mean more of sensible heat extraction. Therefore it is 
desirable to keep Tf as near to unity as possible. Since this 
is difficult to achieve, a value of Tf=0.8 is taken as a 
realistic value. 

The heat capacity ratio w plays a major role in the 
choice of the immiscible oil. Its effect on the energy 
components is shown in Fig 11. The enthalpy change of 
the heat transfer fluid drop, for a given temperature rise, is 
greater for fluids of larger heat capacities. So it is more 
appropriate to take the product of w and the energy 
components for a meaningful analysis. In Fig i1, the 
ordinate used is the product wE. Note that for large values 
of w the latent heat extracted and the total energy 
extracted are greater. Hence the choice should be a fluid of 
high volumetric specific heat. In practice, however, the 
selection is dictated by other factors like miscibility, flash 
point, viscosity, etc. The flash point of the fluid must be 
well above the pcm's freezing temperature and the 
viscosity must be low enough to avoid excessive carry 
over of pcm 4. 

Since the latent heat component  E 2 decreases 
beyond Fo +, the heat transfer process must be stopped 
before then for lhtes devices. Fo + may be considered as 
the maximum residence time of the oil drops in a direct 
contact lhtes device. 

Concluding remarks 
Phase change around a heat sink involving the growth 
and subsequent decay of the freeze front and consequent 

changes in the sink temperature was analysed by finite 
difference methods. A parametric analysis of the heat 
transfer behaviour for a number sink geometries was 
carried out. 

Energy components were estimated for the spheri- 
cal heat sink applicable to direct contact lhtes devices. It is 
concluded that the following conditions are desirable: 

(a) lower Stefan numbers; 
(b) higher values of sink to pcm thermal capacity ratio, 

w; 
(c) higher values of Tf tie lower superheat); 
(d) termination of the heat transfer process at time Fo+. 
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